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Abstract
- When people use language spontaneously, they often do not adhere strictly to commonly accepted

standards of grammaticality. The primary objective of this project is to develop flexible computer
parsing techniques which can deal with the various kinds of ungrammaticalities that arise, both on the
lexical and the phrase level.

The progress towards this goal covered by this report includes:

6The initial development of the FlexP flexible parser based on pattern-matching
techniques.

9 Review of the initial design choices for FlexP in the light of this evaluation, leading to the
formulation of the construction-specific approach to parsing, and its preliminary
evaluation for applied natural language processing through the experimental parsers
CASPAR and DYPAR.

)

3Application of the construction-specific approach to flexible parsing to the parsing of an
artificial command language in the parser for the COUSIN command interface, a graceful
interface for the Unix operating system.

_-'lnvestigation of control structures that would allow the integration of multiple diverse
parsing strategies into a single parsing system in an extensible manner.

Development of a taxonomy of grammatical deviations and recovery strategies for dealing
with them.

()Design and implementation of an initial version of MULTIPAR, the large-scale robust
restricted-domain parser mentioned above that employs multiple construction-specific
parsing strategies. j.-nJ

Application of the flexible parsing techniques developed under previous parts of the
contract to speech input.

1. Research Objectives
1. development of flexible parsing techniques: When people use language

spontaneously, they often do not adhere strictly to commonly accepted standards of
grammaticality. The primary objective of this project was to develop flexible computer
parsing techniques which can deal with the various kinds of ungrammaticalities that
arise, both on the lexical and the phrase level. The kinds of ungrammaticality we wishedto deal with include at the lexical level:

* misspelt words

* novel words whose role can be inferred from context

" erroneous segmentation between words (arising from the omission of spaces, or
the inclusion of spurious spaces or punctuation)
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*lexical items which are entered in one form and then changed to another

and at the phrase level:

e input which is broken off and then restarted

e interjected words and phrases

* omitted or substituted words and phrases

* fragmentary or otherwise elliptical input

9 agreement failure

* idioms

2. investigation of design choices for flexible parsers: The design space for parsers
is very large. We aimed to develop a set of design choices which will result in parsers
well suited to our primary goal. Examples of the design choices we used are:

* bottom-up rather than top-down parsing, except in certain situations in which top-
down prediction is highly constraining

" use of several different parsing strategies, each tailored to a particular type of
construction, and selected between on a dynamic basis

" provision for the suspension and later resumption of a partial parse at a non-
adjacent part of the input string

3. development of flexible parsing techniques for Interfaces to interactive
computer systems: We worked with two types of interface language:

a. limited-domain natural languages, i.e. languages with the syntax of (possibly a
subset on) natural language, but whose semantics are limited to those of the
interactive system being interfaced to.

b. more restrictive artificial languages of the sort currently found in computer
interfaces

Insights gained on these kinds of languages should be transferable to more general
natural language.

4. Investigation of formalisms for specifying domain -dependent grammars: in a
convenient way for both of the types of language mentioned above.

5. applicability of flexible parsing techniques to speech Input: Spoken input is very
susceptible to error, both by the speaker and by low-level word recognition techniques.
Techniques developed for dealing with errors in typed input are therefore good
candidates for use with speech.

As the following description of the accomplishments of this contract shows, these research

objectives were largely met.
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2. Overview of Accomplishments
The work performed under this contract from its start in 1979 includes several distinct components:

" The initial development of the FlexP flexible parser based on pattern -matching
techniques. FlexP was targetted at restricted domain natural languages, and was
evaluated in the context of a gracefully interacting interface to an electronic mail system.
This work covered a period from the start of the contract in July 1979 to early 1981.

" Review of the initial design choices for FlexP in the light of this evaluation, leading to the
formulation of the construction- specific approach to parsing, and its preliminary
evaluation for applied natural language processing through the experimental parsers
CASPAR and DYPAR. This covered the period from early 1981 to early 1982.

* Application of the construction-specific approach to flexible parsing to the parsing of an
artificial command language in the parser for the COUSIN command interface, a graceful
interface for the Unix operating system developed largely under funding from the Defense
Advanced Research Projects Agency. A good deal of effort went into making this parser
robust at the lexical level through spell ing-correction and abbreviation expansion of
command language keywords and of Unix filenames, including full directory path
specifications. This effort started in mid-1981, and continued through mid-1982. It
represented a parallel track of development for the construction -specific ideas mentioned
above.

* investigation of control structures that would allow the integration of multiple diverse
parsing strategies into a single parsing system in an extensible manner. Control
structures of this type are necessary for scaling up the construction-specific approach to
a parser with a linguistic coverage complete enough to serve as a realistic natural
language front-end to a limited-domain computer system. This work started in early 1982
and ran through late 1983.

" Development of a taxonomy of grammatical deviations and recovery strategies for dealing
with them. The taxonomy includes deviations at the lexical and dialogue level, as well as
at the sentential level. For each recovery strategy, an attempt was made to assess the
computational framework necessary to implement it. This work was also preparatory for
a large-scale construction-specific parser. It was done in the latter part of 1983 and early
1984.

" Design and implementation of an initial version of MULTIPAR, our name for the large-
scale robust restricted domain parser mentioned above that employs multiple
construction-specific parsing strategies. MULTIPAR integrates its multiple strategies
through a control structure based on the work mentioned above. MULTIPAR's strategies
operate in a highly interpretive manner from definitions of domain entities (objects,
actions, and states). This high degree of interpretiveness is important for robustness,
since it means the information in the entity definitions can be applied to the input in a
variety of ways. This work ran from early in 1984 through late 1985.

" Application of the flexible parsing techniques developed under previous parts of the
contract to speech input. This work was done in conjunction with a concurrent DARPA-
funded speech project in the Carnegie-Mellon Computer Science Department. The high
degree of error in speech input stemming from both speaker errors and recognition
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errors made this a fruitful domain of application. This work ran from early 1985 to the end
of the contract in June 1986.

Subsequent sections describe each of these pieces of work in greater detail and give references to

published descriptions of them.

3. FlexP

3. 1. Overview

FlexP is a parser targetted at the restricted -domain natural languages typically used in natural

language interfaces. It uses flexible parsing techniques to deal with errors or other

ungrammaticalities in the input. It is described in full detail in"1. The flexible parsing techniques used

by FlexP can be divided into two categories: those that operate at the lexical level and those that

operate at the phrase level. We discuss them separately below.

The initial application for FlexP is as part of a gracefully interacting user interface that we developed

under other support. This application allowed us to use exactly the kind of grammar we are interested

in: a natural language grammar restricted to a tightly constrained domain of discourse. We are most

interested in grammars of this type because they are the most widely used for natural language

communication with machines in such applications as question-answering, data base access,

command interfaces, consultation systems, etc.. Some of the parsing techniques we developed take

advantage of the constraints afforded by such a grammar.

The graceful interface mentioned above is tool- independent in the sense that it can act as ant
interface to any tool (functional subsystem) that is described in a certain declarative formalism

developed in the interface project. If the tool description is to be complete, it must clearly include an

input grammar that defines the way in which the user can specify commands to the tool. We

developed a formalism in which it is convenient for a tool builder to specify a grammar suitable for use

with our flexible parser.

3.2. Lexical Level Processing

Our work at the lexical level concentrated on spelling correction. We designed and implemented a

spelling corrector suitable for use with the phrase level of FlexP. Spelling correction involves

comparing an unknown word against a list of known words and finding the known words that are

close enough to the unknown word according to some metric to be possible corrected spellings for

the unknown word. The assumption being, of course, that the unknown word is unknown because it

is misspelt. Our spelling corrector breaks down this process into two steps:

pS
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I. find a set of candidates for the corrected spellings,

2. select those of the candidates that are close enough to the unknown word to be
corrected spellings of it.

We adopted a two step approach because direct comparison of a misspelt word and a known word

according to most reasonable metrics can be quite expensive. The first step in our method allows us

to use a much cheaper, though less selective, method to generate an initial set of candidates from the

set of all known words, and then to apply the more expensive direct comparison only to the words in

this smaller candidate set.

Our direct comparison algorithm is in fact a slightly modified version of the INTERLISP spelling

correction algorithm. As such it is of little research interest. It deals with transpositions, and with

repeated, substituted, and omitted letters.

The initial selection of candidates is more interesting. Our method selects as candidates those

known words which have the longest common substring with the unknown word. Moreover, for this

purpose the words are treated as though their letters were arranged in a circle with the first letter

following the last. This method makes the selection algorithm insensitive to where in a word a spelling

error occurs, whereas a selection based say on common initial substrings would penalise spelling

errors near the beginnings of words compared to those occuring near the ends. This method

depends on storing all cyclic permutations of all known words in the dictionary. An example will make

this clearer. Suppose the word "first" is known to the system. The dictionary would then contain all

its cyclic permutations: first%, irst%f, rst%fi, st%fir, t%firs, where a percent sign denotes the end of a

word. Suppose that the word to be spelling-corrected is "frist". All of its cyclic permutations are

generated, and matched on an initial substring basis against all the items in the permuted dictionary,

including those listed above. The best match among those is st%fir which has an initial substring of

length three in common with the st%fri permutation of frist. Note that this substring is one longer than

the longest common substring of first and frist. This method of selecting initial candidates appears to

be worth the approximately five-fold increase in the size of the dictionary that it entails.

Besides spelling correction, we alsodevoted some attention to incorrect segmentation at the lexical

level, so that run together words such as "firstone" can be dealt with. Our approach involves a

modification to the second step of the spelling corrector: the step which makes a direct comparison

between a known and unknown word. The change is quite simple; if the comparison procedure finds

that an initial segment of an unknown word is acceptably close to a known word, then the known

word is returned as the correction for the unknown word along with the trailing segment of the
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unknown word. Th;s trailing segment can then used as the next lexical item in the input.

The final lexical level topic we looked at was novel words. In general, the spontaneous use of new

vocabulary by a user is a very hard research topic. However, we made provision for a special class of

novel words: novel proper names. Such names are handled at the phrase level rather than the lexical

level, through the inclusion of a special "unknown" word class. Thus, it is the current parsing

environment which will decide whether an unknown word is treated as a proper name or a

misspelling.

3.3. Phrase Level

The central part of FlexP operates at the phrase level. At this level the parser is intended to parse

correctly input that corresponds to a fixed grammar, but also to deal with input that deviates from that

grammar in a certain set of ungrammaticalities. These types of ungrammaticality include:

" input which is started one way, and then broken off and restarted
(e.g. delete the show me all the messages from Smith)

" fragmentary and otherwise elliptical input
(e.g. "Jim" in response to "Do you mean Jim Smith or Fred Smith?")

" interjected words and phrases
(e.g. "Display the message dated I think June 17")

" omitted or substituted words or phrases
(e.g. "Display the message June 17"
where "dated" or "received after" or some similar phrase is omitted)

" missing or spurious punctuation

To tackle these ungrammaticalities we decided to base our parser on two well-known but relatively

little used parsing strategies: bottom-up parsing and pattern-matching.

3.3.1. Bottom-Up Parsing

Our choice of a bottom-up strategy was based on our need to recognize isolated sentence

fragments. If an utterance which would normally be considered only a fragment of a complete
sentence is to be recognized top-down, there are two approaches to take. First, the grammar can be

altered so that the fragment is recognized as a complete utterance in its own right. This is

undesirable because it can cause enormous expansion of the grammar, and because it becomes

difficult to decide whether a fragment appears in isolation or as part of a larger utterance, especially if

the possibility of missing end of sentence markers also exists. The second option is for the parser to

infer from the conversational context what grammatical sub-category (or sequence of sub-categories)
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the fragment might fit into, and then to do a top-down parse from that sub-category. This strategy is

clearly better than the first one, but has two problems; first of predicting all possible sub-categories

which might come next, and secondly, of inefficiency if a large number are predicted.

Bottom-up parsing avoids the problem of predicting what sub-categories may occur. If a fragment

fitting a given sub-category does occur, it is parsed as such whatever the context. However, if a given

input can be parsed as more than one sub-category, the bottom-up approach would have to produce

them all, even if only one would be predicted top-down. In a system of limited comprehension,

fragmentary recognition is sometimes necessary because not all of an input can be recognized,

rather than because of intentional ellipsis. Here, it is probably impossible to make predictions and

bottom-up parsing is the only method that is likely to work. Bottom-up strategies are also helpful in

recognizing interjections and restarts.

3.3.2. Pattern-Matching

We chose to use a grammar of linear patterns rather than a transition network because pattern-

matching meshes well with bottom-up parsing, because it facilitates recognition of utterances with

omissions and substitutions, and because it is necessary anyway for the recognition of idiomatic

phrases.

A grammar for FlexP is a set of rewrite or production rules whose left hand side is a linear pattern of

constituents (lexical or higher level) and whose right hand side defines a result constituent. Elements

of the pattern may be labelled optional or allow for repeated matches; We make the assumption that

the grammar will be semantic rather than syntactic, with patterns corresponding to idiomatic phrases

or to object and event descriptions meaningful in some limited domain, rather than to general

syntactic structures.

Linear patterns fit well with bottom-up parsing because they can be indexed by any of their

components, and because, once indexed, it is straightforward to confirm whether a pattern matches

input already processed in a way consistent with the way the pattern was indexed.

Patterns help with the detection of omissions and substitutions because in either case the relevant

pattern can still be indexed by the remaining elements that appear correctly in the input, and thus the

pattern as a whole can be recognized even if some of its elements are missing or incorrect. In the

case of substitutions, such a technique can actually help focus spelling correction or proper name

recognition by isolating the substituted input and the pattern constituent which it should have

matched. In effect, this allows the normally bottom-up parsing strategy to go top-down to resolve

AD
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such substitutions.

3.3.3. Design Revisions Based on an Initial Implementation

An initial parser implementation based on these ideas helped us clarify some issues in the control of

the pattern- matching process. We found that if, on input of a given lexical item, we attempted to
match all patterns indexed by the input, a proliferation of unrelated patterns resulted, slowing the

parser down, arnd making it hard to determine a consistent parse for a complete utterance. While the
ability to index a pattern from any of its constituents was important for fragmentary or restarted
inputs, it tended to generate too many spurious possibilities in more coherent input. Consequently,
we produced a considerably refined design for our parser. The key refinement was never to try to
match a pattern indexed by an input unless the result of that pattern could be fitted into the partial
parse formed up to that point, or unless the pattern was being used to start a new partial parse. With
this degree of control, we can reduce the number of active patterns to those that are directly relevant
to the current parse. In essence, we introduced a degree of top-down filtering into the pattern-
matching procedure, without giving up the responsiveness to input afforded by our essentially

bottom-up process. Technically, our refinements make the parser left-corner instead of bottom-up,
but since the term, left-corner, is relatively obscure, we prefer to continue describing the parser as
bottom-up.

Our experience with the initial implementation also convinced us of the need to allow a partially

completed parse to be suspended with the possibility of later continuation. The reasons for this are
related to the recognition of interjections, restarts, and'implicit terminations. The parsing algorithm
works left to right in a breadth-first manner. It maintains a set of partial parses, each of which
accounts for the input already processed but not yet accounted for by a completed parse. The parser
attempts to incorporate each new input into each of the partial parses. If this is successful, the partial
parses are extended and may increase or decrease in number. If no partial parse can be extended,
the entire set is saved as a suspended parse.

There are several possible explanations for input mismatch, i.e. the failure of the next input toI

" The input could be an implicit termination, i.e. the start of a new top-level utterance, and
the previous utterance should be assumed complete.

The input could be a restart, in which case the active parse should be abandoned anid aI
new parse started from that point.

" The input could be the start of an interjection, in which case the active parse should be
temporarily suspended, and a new parse started for the interjection.
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It is not possible, in general, to distinguish between these cases at the time the mismatch occurs. If
the active parse is not at a possible termination point, then input mismatch cannot indicate implicit
termination, but may indicate either restart or interjection. It is necessary to suspend the active parse
and wait to see if it is continued at the next input mismatch. On the other hand, if the active parse is at
a possible termination point, input mismatch does not rule out interjection or even restart. In this
situation, our algorithm tentatively assumes that there has been an implicit termination, but suspends

the active parse anyway for subsequent potential continuation.

Note also that the possibility of implicit termination provides justification for the strategy of
interpreting each input immediately it is received. If the input signals an implicit termination, then the
user may well expect the system to respond immediately to the input thus terminated.

While linear patterns are well suited as the basic grammatical constituents for the types of domain
we intend to cover, there are always a few types of construction that do not fit well into this formalism,
mainly because of efficiency considerations. Dates, for example, come in so many small
perturbations of order (e.g. March 2, 1980; 2 March 1980, 3-2.80, March the second, 1980, etc.) that it

* would be quite inefficient to parse them through a set of linear patterns, one corresponding to each
* form. Instead, we have introduced the idea of a special pattern into the parser. A special pattern is

not a static pattern at all, but instead a set of special purpose functions which are able
deterministically to recognize any of the several forms of their constituent. The set of functions that

* must be provided for each special pattern is pre-defined by the parser, which calls these functions at
the appropriate time. Special patterns thus provide a relatively clean escape from the inefficiencies
that can sometimes arise with strict linear pattern matching.

Details of our current parser design and several worked examples of its operation can be found in11

3.4. Applications

In designing FlexP we tried to strike a balance between theoretical arnd practical considerations.
Thus, while we believe that many of the techniques embodied by FlexP are of quite general
applicability, we have not tried to produce a universal parser. FlexP is, in fact, aimed at languages
that can be characterized as domain -restricted subsets of natural language. We are most interested
in this type of language because it is the type almost always used to provide natural language access
to a functional computer system, and thus is more in need of flexible parsing techniques than other,
more general, approaches to language processing. The range of applications of restricted -domain
natural language include interfaces to data-bases, command interfaces, question -answering systems,
and virtually every other type of application in which natural language has been used in conjunction
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with a practically useful underlying computer system.

Our initial application for FlexP is as the parser for a gracefully interacting tool independent user
interface that we are developing under other support. Tool independent here means that the system
can be used as the interface to any one of an arbitrary number of tools (functional subsystems). The
interface gets specific information about each tool from a declarative too/ description, a database in a
formalism we have devised, containing information about the various objects and operations dealt
with by the tool. The most important reason for making the interface tool independent is the amount
of effort required to make it gracefully interacting, effort which could not be justified for an interface
to a single tool. Gracefully interacting here means that the interface appears friendly, supportive, and
robust to the user, in contrast to most currently available command interfaces which appear most
uncooperative and unfriendly to their users. Naturally, the ability to parse input flexibly is a very
important component of graceful interaction. Other aspects of graceful interaction are detailed in

and a broader view of the interface project is given in

While restricted natural language is important in a command interface, especially for naive users of
that interface, expert users would tend to become frustrated if they had to type all their input in
complete English sentences. Crypticness can be dealt with by the flexible techniques we have
outlined, so that if the user typed

show messages since June 12

instead of
show me all the messages that arrived since June 12

FlexP could fill in the gaps.

3.5. Language Definition

The tool- independent interface mentioned above can serve as the user interface to any functional
subsystem which is specified in a declarative tool description according to a certain formalism.
Clearly then, the tool description, besides describing the objects and operations of the tool, must also

specify a language in which the user will talk about those objects and operations. For the purposes of
our parser, the tool description must define a language in terms of whose grammar the parser will
process the user's input. A grammar for FlexP consists of a set of patterns with associated results.

However, the formalism used for these rewrite rules is sufficiently complicated to make itU

inappropriate for direct use in the tool description. In addition, to produce efficient grammars or
achieve certain effects, it is necessary to know certain specialized techniques for writing rules that itIdI
need to provide the tool designer a formalism for the definition of a language which would shield him
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from all these details, and instead allow him to describe the language in terms more naturally related

to the tool he was designing.

The formalism we designed to meet this need requires the user to specify the language by defining,

for each object and operation known to the tool, syntax by which the object or operation may be

described. The syntax for an object or operation can be specified as a pattern of words, or as an

instance of some syntactic construction, such as noun phrase or transitive verb phrase. For example,

the tool description of an electronic mail system might specify the syntax of a message as a noun

phrase whose head noun is "message", or "note", or "piece of mail", and whose post modifiers

include "from + Sender", "dated + Date", etc.. Here + Sender means anything that can appear in

the Sender slot of a message. Note also that the pattern-matching basis of the parser allows the

notion of a head noun to be stretched to such phrases as "piece of mail". This specification would

allow the user to refer to a message as "the message from Smith", or "a piece of mail dated June 17",

and so on. The individual syntax descriptions for each tool object and operation are compiled into a

set of rewrite rules suitable for use by FlexP. During the compilation process, this set is

supplemented by a number of domain independent constructions thatthe user is likely to employ. So

the user may for instance say "give me more information about x", where x is the name of any object

or operation, and this will be interpreted as a request to use the interface's help facility.

4. Construction-Specific Approach to Flexible Parsing

4.1. Overview

After completing the implementation of the FlexP parser as described in Section 3, we evaluated it

through use in a gracefully interacting interface developed under other support. This application

showed:

" that RexP was able to parse both grammatical and ungrammatical input according to a
simple grammar of pattern-matching rewrite rules,

" that the bottom-up approach of FlexP was helpful in the case of ungrammatical input,

" and that a grammar suitable for use by FlexP could be defined in terms natural to the

domain of interaction of the interface.

However, the experimental use of FlexP also made it clear that FRexP had certain problems, largely

due to the uniform nature of its grammar. These problems caused FlexP to parse some

ungrammatical input inefficiently, and in other cases to generate an unnecessarily large number of

alternative interpretations of ungrammatical input.
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Based on this evaluation, we reviewed the set of design choices on which FlexP was based to

determine if it was possible to resolve the problems that FlexP had without also losing the desirable

aspects of its performance. This review led us to replace the design choice of a single parsing

strategy based on linear pattern matching with an approach based on multiple parsing strategies, one

for each construction class of the language being parsed, with the strategies being selected between

on a dynamic basis. This multi-strategy, construction-specific approach was evaluated in a

preliminary way through the construction of two small parsers, CASPAR and DYPAR, and was found

to show considerable promise.

4.2. Evaluation of FlexP

FlexP was tested extensively in conjunction with a gracefully interacting interface to an electronic

mail system'. "Gracefully interacting" means that the interface appears friendly, supportive, and

robust to its user. In particular, graceful interaction requires the system to tolerate minor input errors

and typos, so a flexible parser is an important component of such an interface. While FlexP

performed this task adequately, problems of efficiency and of unnecessary ambiguity showed up

through this experimentation - examples are given below. The problems that arose are rooted in the

incompatibility between the uniform nature of the pattern-matching rewrite rule grammar

representation used by FlexP and the kinds of flexible parsing strategies required to deal with the

inherently non-uniform nature of some language constructions. In particular:

* Different elements in the pattern of a single grammar rule can serve radically different
functions and/or exhibit different ease of recognition. Hence, an efficient parsing
strategy should react to their apparent absence, for instance, in quite different ways.

• The representation of a single unified construction at the language level may require
several linear patterns at the grammar level, making it impossible to treat that
construction with the integrity required for adequate flexible parsing.

The second problem is directly related to FlexP's use of a pattern-matching grammar, but the first

would arise with any uniformly represented grammar applied by a uniform parsing strategy.

For our example application, these problems manifested themselves most markedly by the presence

of case constructions in the input language. Consider, for example, the following noun phrase with a

typical postnominal case frame:
the messages from Smith about ADA pragmas dated later then Saturday.

The phrase has three cases marked by "from", "about", and "dated later than". This type of phrase

is actually used in FlexP's current grammar, and the basic pattern used to recognize descriptions of

messages is:
<?determiner *MessageAdj MessageHead *MessageCase>
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which says that a message description is an optional (?) determiner, followed by an arbitrary number

(*) of message adjectives followed by a message head word (i.e. a word meaning "message"),

followed by an arbitrary number of message cases. In the example, "the" is the determiner, there are

no message adjectives, "messages" is the message head word, and there are three message cases:

"from Smith", "about ADA pragmas", and "dated later than". Because each case has more than one

component, each must be recognized by a separate pattern:
<%from Person>
<%about Subject>
<%since Date>

Here % means anything in the same word class, "dated later than", for instance, is equivalent to
"since" for this purpose.

These patterns for message descriptions illustrate the two problems mentioned above: the

elements of the case patterns have radically different functions - the first elements are case markers,

and the second elements are the actual subconcepts for the case. Also, a single construction at the

language level is spread over several patterns in the grammar. This has two undesirable

consequences for the parsing process- inefficiency and the generation of unnecessary ambiguities.

First, let us examine how inefficiency arises. Because the parser has no information about the

relationship between the cases and the top-level pattern (other than that the results of the case

patterns match the last element in the top-level pattern), several powerful, but specialized, strategies

for dealing with (regular or irregular) case constructions cannot be employed with a resulting loss of

parsing efficiency. For instance, since case indicators are typically much more restricted in range of

expression, and therefore much easier to recognize than their corresponding subconcepts, a

plausible strategy for a parser that "knows" about case constructions is to scan input for the case

indicators, and then parse the associated subconcepts top-down. This strategy is particularly

valuable if one of the subconcepts is malformed or of uncertain form, such as the subject case in our

example. Neither "ADA" nor "pragmas" is likely to be in the vocabulary of our system, so the only
way the end of the subject field can be detected is by the presence of the case indicator "from" which

follows it. However, FlexP cannot distinguish case indicators from case fillers - both are just elements
in a pattern with exactly the same computational status. Hence it cannot use this strategy and

inefficiency results.

The second consequence of the general problems mentioned above is the generation of

unnecessary alternative parses. For instance, if an object type can appear in more than one slot of a

case frame, and a case indicator for such an object is omitted on input, then a parser dealing with

case constructions in an integrated way may be able to resolve the potential ambiguity using

J I I
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information from what other cases in the case frame are filled, while a uniform strategy would

naturally tend to generate all the ambiguous alternatives, and this certainly was the case for FlexP. A

specific example arises in the case of:
the messages Jones to Smith

Here, there are two relationships between Persons and Messages - sender and recipient. Since Smith

is marked as the recipient, an integrated case strategy can tell that Jones must fill the other

relationship, whereas FlexP because of its uniform strategy would get the Smith relation right, but flag

an ambiguous relation for Jones.

Examples like these forced us to the conclusion that parsing case constructions efficiently and

unambiguously in a flexible manner demands parsing techniques specific to case constructions. In

turn, this caused us to review our design decision to use a uniform grammar based on linear patterns,

which does not lend itself to such construction-specific parsing techniques. Since similar arguments

can be made against other uniform parsing methods, the idea of developing a parser based on a

number of different parsing strategies suggested itself.

4.3. Experiments with a Multi-Strategy Approach to Parsing

Parsing using several different construction-specific strategies is a novel approach, so instead of

trying to implement a full-scale parser immediately, we decided to try out the ideas in two simplified

parsers, CASPAR and DYPAR. CASPAR was designed to show the suitability of construction specific

techniques for ungrammatical input, while DYPAR served as a vehicle to investigate the control
problems of coordinating several distinct parsing strategies. We describe both of them briefly below.

Further details can be found in12

CASPAR was designed to use some of the insights about the flexible parsing of case constructions

mentioned in the previous section. To keep things as simple as possible, CASPAR was designed only

to recognize simple imperative verb phrases, i.e. imperative verbs followed by a sequence of noun

phrases possibly marked by prepositions. Examples for an interface to a data base keeping track of

course-registration at a universit include:
cancel math 24 7
enroll Jim Campbell in English 324
transfer student 5518 from Economics 101 to Business Administration 111

Such constructions are classic examples of case constructions; the verb or command is the central

concept, and the noun phrases or arguments are its cases. Considered as surface cases, the

command arguments are either marked by preposition, or unmarked and identified by position, such

as the position of direct object in the examples above.
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In line with the construction- specific approach, CASPAR was given two quite distinct parsing
strategies:

* A strategy to identify the appropriate case frame and activate its case markers and filler-
patterns to deal with the rest of the input utterance.

" A strategy to recognize individual constituent case fillers and markers, including the verb,
noun phrases in the role of case fillers, and prepositions in the role of case markers.

The first of these strategies is dominant in the sense that it decides where in the input the second,
more detailed, recognizer should be applied and what it should try to recognize when it is applied.
The second strategy is a simple linear pattern matcher. This is just what is needed for verbs,
prepositions, and simple object descriptions such as those in the examples above.

While CASPAR was constructed in as simple a way as possible, the flexibility and robustness that
were obtained by providing separate parsing strategies for the two different construction types it
recognizes (case and fixed-order linear patterns) is quite striking. The types of grammatical deviation
that can be dealt with alone or in combination include:

" Unexpected and unrecognizable (to the system) interections as in:
tSQtS enroll if you don't mind student 2476 in I think Economics 247.

" missing case markers:
enroll Jim Campbell Economics 247.

" out of order cases:
In Economics 247 Jim Campbell enroll.

" ambiguous cases:
transfer Jim Campbell Economics 24 7 English 332.

Moreover, the construction -specific approach of CASPAR allowed it to deal with all these kinds of
ambiguity without the inefficiencies and unnecessary ambiguities that arose with FlexP as described
in the previous section.

While CASPAR concentrated on dealing with ungrammaticality through construction- specific
strategies, our other experimental parser, DYPAR, concentrated on the control problems involved in
combining several different parsing strategies. DYPAR has a Kernel control module to select the
appropriate parsing strategy as a function of the expected input structure, plus three parsing
strategies to select among, each with its own grammatical and/or semantic knowledge encodings,
and global data structures to share information. These three strategies are:

* A context-free semantic grammar component, grouping domain information into
hierarchical semantic categories useful in classifying individual words and phrases in the
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input language.

" A partial pattern match component, represented as pattern-action rules. The patterns
may contain individual words, semantic categories (from the semantic grammar), wild
cards, optional constituents, register assignment and register reference. This method
enables the semantic grammar non-terminal categories to be applied in a much more
effective context-sensitive manner than in a pure context-free grammar recognizer.

" Equivalence transformations map domain-dependent and domain-independent
constructs into canonical form, requiring a fraction of the patterns and semantic
categories that would otherwise be needed. If a phrase-structure can be expressed in
several different ways, while retaining the same meaning, it is clearly beneficial to first
map it into canonical form, rather than being forced to include all possible variants in
every context where that constituent could occur.

These three strategies were combined into a single parser through the use of an applicative

condition-action cycle in which all matching rules were allowed to fire on each cycle. This allowed

these three quite distinct types of strategy to work effectively together.

4.4. Non-Parsing Advantages of a Construction-Specific Approach

Besides showing the promise of a multi-strategy construction-specific approach to parsing for both

grammatical and ungrammatical input, our experiments with CASPAR and DYPAR also showed the

approach had other advantages, not directly involved in parsing. In particular, the approach made it

straightforward to produce ',)calized representations of unavoidable ambiguity, thus enhancing

interaction with the user to resolve the ambiguity. In addition, the approach allows task-specific

languages, defined in terms natural to the domain, to be used by the parser without a time-consuming

compilation phase, thus significantly enhancing the language development process. The remainder

of this section expands on these points. Further details can be found ins

If a flexible parser being used as part of an interactive system cannot correct ungrammatical input

with reasonable certainty, then the system user must be involved in the resolution of the difficulty

Experience with our first flexible parser, FlexP, suggested that the way requests for clarification in

such situations are phrased makes a big difference in the ease and accuracy with which the user can

correct his errors, and that the user is helped most by a request focusing as tightly as possible on the

exact source and nature of the difficulty. As the following examples show, this type of focused

interaction was very difficult to arrange with FlexP, but was straightforward using the construction-

specific approach of CASPAR.

The following input is typical for the electronic mail system interface' with which FlexP was

extensively used:
the messages from Fred Smith that arrived after Jon 5
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The fact that this is noc a complete sentence in FlexP's grammar causes no problem. The only real

difficulty comes from "Jon", which should presumably be either "Jun" or "Jan". FlexP's spelling

corrector can come to the same conclusion, so the output contains two complete parses which are

passed onto the next stage of the mail system interface. The first of these parses looks like:

[DescriptionOf: Message
Sender: [DescriptionOf: Person

FirstName: fred
Surname: smith

]
AfterDate: [DescriptionOf: Date

Month: january
DayOfMonth: 5

]

This schematized property list style of representation should be interpreted in the obvious way.

If the next stage of the interface has access to other contextual information which allows it conclude

that one or other of these parses was what was intended, then it can proceed to fulfill the user's

request. Otherwise it has little choice but to ask a question involving paraphrases of each of the

ambiguous interpretations, such as:

Do you mean:
1. the messages from Fred Smith that arrived after January 5
2. the messages from Fred Smith that arrived after June 5

Because it is not focused on the source of the error, this question gives the user very little help in

seeing where the problem with his input actually lies.

One straightforward solution to the problem is to augment the output language with a special
ambiguity representation. The output from our example might look like:

[DescriptionOf: Message
Sender: [DescriptionOf: Person

FirstName: fred
Surname: smith

]
AfterDate: [DescriptionOf: Date

Month: [DescriptionOf: AmbiguitySet

Choices: (january june)

I
DayOfMonth: 5

: ]

• This representation is exactly like the one above except that the Month slot is filled by an

AmbiguitySet record. This record allows the ambiguity between january and june to be confined to

the month slot where it belongs rather than expanding to an ambiguity of the entire input as in the first
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approach we discussed. By expressing the ambiguity set as a disjunction, it would be straightforward

to generate from this representation a much more focused request for clarification such as:

Do you mean the messages from Fred Smith that arrived after January or June 5?

However, this approach only works if the ambiguity corresponds to an entire slot filler. Suppose, for

example, that instead of mistyping the month, the user omitted or so completely garbled the

preposition "from" that the parser effectively saw:
the messages Fred Smith that arrived after Jan 5

In the grammar used by FlexP for this particular application, the connection between Fred Smith and

the message could have been expressed only by "from", "to", or "copied to" (or synonyms thereof).

To represent the ambiguity, FlexP generates three complete parses isomorphic to the first output

example above, except that Sender is replaced by Recipient and CC in the second and third parses

respectively. Again, this form of representation does not allow the system to ask a focused question

about the source of the ambiguity. The previous solution is not applicable because the ambiguity lies

in the structure of the parser output rather than at one of its terminal nodes. Using a case notation, it

is not permissible to put an "AmbiguitySet" in place of one of the deep case markers. To localize

such ambiguities and avoid duplicate representation of unambiguous parts of the input, it is

necessary to employ a representation like the one we designed for CASPAR:

[DescriptionOf: Message
AmbiguousSlots: (

[PossibleSlots: (Sender Recipient CC)
SlotFiller: [DescriptionOf: Person

FirstName: fred
Surname: smith)

]
)

AfterDate: [DescriptionOf: Date
Month: January
DayOfMonth: 5

This example CASPAR output is similar to the two given previously, but instead of having a Sender

slot, it has an AmbiguousSlots slot. The filler of this slot is a list of records, each of which specifies a

SlotFiller and a list of PossibleSlots. The SlotFiller is a structure that would normally be the filler of a

slot in the top-level description (of a message in this case), but the parser has been unable to

determine exactly which higher-level slot it should fit into; the possibilities are given in PossibleSlots.

With this representation, it is now straightforward to construct a directed question such as:
Do you mean the messages from, to, or copied to Fred Smith that arrived after January 5?

The adoption of such representations for ambiguity has profound implications for the parsing
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strategies employed by any parser that tries to produce them. For each type of construction that such

a a parser can encounter, the parser must "know" about all the structural ambiguities that the

construction can give rise to, and must be prepared to detect and encode appropriately such

ambiguities when they arise. Construction -specifIic parsing techniques as used in CASPAR fit this

Is: requirement perfectly. Each construction -specific parsing strategy can encode detailed information

about the types of structural ambiguity possible with that construction and incorporate the specific

information necessary to detect and represent these ambiguities.

This section concludes with a brief note about language definition. As we described in Section 3,

FlexP had a language definition facility which allowed the designer of a task-specific language to

define the language without having to know the exact details of FlexP's grammar formalism. This

made it much easier to define such languages, but the facility turned out to be inconvenient to use in

* practice because of the time-consuming compilation phase necessary to transform the language

definition in domain terms into FlexP's pattern-match rule formalism. This was particularly

inconvenient when a large number of relatively minor changes need to be made, as is normal during

language development.

For CASPAR, we implemented a similar language definition facility, but with one important

difference - instead of compiling the language definitions into a different formalism, we designed

- CASPAR to interpret them directly. This made the language designer's job much easier, by letting

him make the many small changes that are always necessary in the course of developing a language,

without requiring him to go though a time-consuming compilation for each incremental change. The
reason that it was possible to do this with CASPAR, arnd not with FlexP, relates directly to the

construction -specific approach that CASPAR embodies. Since the constructions CASPAR deals with

correspond directly to those that are natural to the domain, direct interpretation of a language

representation designed around these constructions was straightforward for CASPAR.

5. COUSIN Command Language Parser

5. 1. Overview
At an early stage in the development of the multi-strategy, construction- specific approach to

N parsing restricted domain natural language described in Section 4, it became apparent to us that a
similar approach could be used to parse artificial command languages as well. Accordingly, from mid

1961, we began to develop a flexible parser based on this approach for the COUSN interface to the

Unix operating system, which we are developing under funding from the Defense Advanced Research

%~~ .... . -
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Projects Agency, and which uses an extended version of the standard artificial Unix command

language for input. This effort, which resulted in a complete parser in mid 1982, constituted a

development track for the construction- specific approach parallel to that represented by CASPAR

and DYPAR and their successor. The two tracks, however, are not completely independent, since

several of the specific techniques developed for CASPAR also turned out to be useful for the COUSIN

parser, as the description in the remainder of this section will show. More details of the COUSIN

system and its parser can be found in 13 . The following two subsections describe the command and

lexical levels of the COUSIN parser separately.

5.2. Command Level

The command language for COUSIN is the Unix language, minus the constructions at a level higher

than s~ngle commands, but supplemented by other language features that make it easier for the user

to specify commands. The standard Unix format for command lines is:
<command-name) <options) <arguments>

where <options> is a possibly empty sequence of flags, single characters preceded by dashes, and

option markers, also single characters preceded by dashes which identify the next input token as an

optional parameter. The (arguments> are a fixed order sequence of parameters to the command that

are not identified by any markers, although they may in some cases be optional. An example is:
cc -w -0 -o bar foo.c tum~c

which is a call to the C language compiler (cc) with options "w" (suppression of warning diagnostics)

and "0" (object code improvement), a flagged option "o" (which writes output to the file named,

"bar"), and two arguments foo.c and fum.c, the files to be compiled. Conceptually, cc actually has

one argument, the file to be compiled, which may be filled an arbitrary number of times; this type of

argument is called a multiple argument. A command with two arguments is "cp", which copies a list

of files, its first argument, into a directory, its second argument, as in:

cp fil file2 dir

COUSIN makes two extensions to the standard Unix language: the addition of explicit markers for

command arguments as a supplement to the present system of purely positional specification, and

the addition of full word flags and markers for options as a supplement to the present system of single

characters preceded by dashes. So the above examples could be written for instance as:
cc -0 no-warnings foo.c fum.c output-to bar
cp onto dir from file 1 fie2

When whole-word markers are used, the ordering restrictions of standard Unix are relaxed. Note that

this extension makes the language similar in many ways to the kind of language handled by CASPAR -

command verb followed by a set of marked cases. The major differences are that some caseI

markers stand by themselves and have no fillers, and that the Unix positional syntax is still included in

A
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the language. This similarity is exploited by some of the flexible parsing techniques described below.

The multi-strategy construction-specific parsing algorithm that we have so far developed for this

language is as follows:

1. Command Identification: In much the same way as CASPAR finds the verb of its
sentence, the COUSIN parsor determines which command is being invoked, and locates
the syntax description - positional and case information - for the command.

2. Standard Unix parsing: Using this syntax information the remaining part of the
command line is parsed as though it conformed to the standard Unix syntax for that
command-, taking only Unix style options and positionally specified arguments into
account. If this step is successful, parsing is complete, and no attempt is made to use the
case style syntax. This ensures that correct Unix commands which happen by
coincidence to use case marker keywords will be recognized correctly.

3. Extended Unix parsing: If the standard parse is unsuccessful in any way, the next step
is to parse the line according to the extended syntax. The procedure here is the CASPAR
case marker scanning algorithm, modified only to deal with case markers with no
corresponding case fillers; i.e., a scan is made for any argument marker keywords, or any
option keywords, and the arguments and options thus flagged are extracted.

4. Flexible Unix parsing: Otherwise, if any of the input string is still not accounted for
after this step, a more flexible algorithm is applied. This algorithm is designed to deal
with situations in which the user has:

" used a mixture of marker and positional notation

" misspelt input tokens, either arguments or markers (see below on lexical level

processing for details on the spelling correction techniques used).

" used positional notation in the standard Unix style, but has got the arguments out
of order

" omitted one or more required arguments

" used standard dash notation with single character flags and markers for options,
but has omitted the dash or put the option string other than at the beginning of the
input.

Two basic techniques are involved in this flexible style of parsing: scanning for misspeltI
markers and options, and comparing permutations of the arguments against the input
tokens. The first of these is a CASPAR style marker scan, with the possible targets for
correct spellings restricted to be markers of the arguments not yet filled. The second

technique is specific to the positional style of construction allowed by Unix, and is kept

combinatorially tractable by the fact that no Unix command has more than threeI

An example will illusfraz "w this algorithm operates. Suppose, for instance that the user types:

~N 4
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cp onto dir form i12 file3

when he really intended to type:
cp onto dir from file2 file3

Assume that "dir" is a valid directory name, "file2", "file3" are valid file names, but "onto", "form",

and "from" are not valid files or directories. The command cp has two arguments, SOURCE and

DESTINATION. SOURCE is a multiple argument of readable files. DESTINATION is an ordinary

argument of either a writable directory, or a creatable file (which may or may not already exist). There

is an additional restriction that if DESTINATION is a file, SOURCE may contain only one file. The

default order is SOURCE DESTINATION.

Standard Unix syntax does not work, so extended Unix syntax is tried. The marker scan comes up

with "onto", and "dir" is recognized as a proper DESTINATION, and there are just three remaining

arguments which could be assigned to SOURCE, but "form" and "fil2" have failed matches with

SOURCE, so extended Unix syntax does not work, and flexible parsing must be tried. Note that if

"form" and "fil2" were suitable files for SOURCE, there would have been no need to employ the extra

flexibility. The first flexible step is to scan for misspelt markers from left to right. Extended Unix

syntax has already accounted for "onto" and "dir", so the scan starts from "fornm", which is of course

corrected to "from". Since "from" is the marker for SOURCE, "fil2" is required to fill the SOURCE

argument, and since "file3" satisfies the restrictions for SOURCE, and since SOURCE is a multiple

argument, "file3" also is taken into the SOURCE argument. Since "fil2" is required to go into

SOURCE the fact that it fails the restrictions on the argument trigger an immediate attempt to spelling

correct it. This attempt succeeds, and the parse is correct and complete, without it being necessary

to invoke the second permutation phase of flexibility.

This parsing algorithm has proved efficient in the recognition of grammatical input, and robust in its

handling of ungrammatical input. In addition, its construction-specific character has made it easy to

produce localized representations of ambiguity in its output, which are, as described in Section 4,

very important for graceful interaction with the user to resolve the ambiguity.

5,3. Lexical Level Processing

Statistically, the greatest concentration of errors in typed input are typos or other errors in single

words. Lexical level processing is thus very important for the performance of flexible parsers in

general, and for the COUSIN parser in particular.

The lexical level of the COUSIN parser raises several specialized problems, some of them common to

artificial command languages in general, and others related to the particular command language
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involved. First, there are many proper names, such as the names of files, which cannot be in the

vocabulary of the parser, but must be verified by asking the underlying system whether such files

exist, or in the case of commands that create new files, must be checked for validity as file names. As

a part of the COUSIN parser, we implemented such routines to interrogate the Unix operating system.

We also integrated the spelling correction component of the parser with this interrogation. This

spelling correction procedure operated by obtaining a list of all the files in the current directory and

spelling correcting unknown tokens that did not turn out to be correct file names against this list. The

algorithm also took account of the access rights that were required for the command argument for

which the token was a candidate filler, preferring those files with correct access rights over those

without the correct rights. A similar spelling correcting interface to the file system would be needed

for any error correcting parser for an operating system command interface.

A lexical problem more specific to the Unix system arises because in Unix files are often specified by

paths through a tree of directories in addition to the actual file name, as in /usr/pjh/text/report.txt,

where usr, pjh, and text are directory names. When spelling errors occur in such paths, they need to

be resolved by spelling -correcting each element of the path separately, rather than trying to correct

the specification as a whole. We included a special component in the COUSIN parser to deal with this.

The component interacted with the file spelling corrector to resolve errors in such paths by

maintaining a search tree of routes from the root of the path to its tip. At each step in the search, the

tree was expanded in a breadth-first manner by looking up the next path element name in each

directory currently at the frontier of the search tree. If the element was found in any of the directories,

the search tree was extended only for those directories, otherwise, spelling correction was attempted

on the element in all of the directories, and the search tree expanded for each correction that was

found, even if there were several in a single directory. In this way, if a spelling correction of one

element of the path turns out to be ambiguous, subsequent path elements can be used to select

between the ambiguities.

We also provided the users Of COUSIN with the convenience of initial substring abbreviation

wherever it does not result in ambiguity. Thus "copy report.txt onto backup.txt" could be abbreviated

to "co r ont bac" if this was sufficient to avoid ambiguity. Problems, however, arise in spelling

correcting such initial abbreviations, especially when they are very short; a single letter abbreviation

can be changed into any other single letter by one spelling correction step. We therefore did not

attempt spelling correction on one or two character tokens. Note that the possibility of a combination

of spelling correction and initial substring abbreviation had an important effect on our spelling

correction algorithm. We treated initial substring abbreviation as a mild form of spelling error and

organized the left-to-right progress of our spelling correction algorithm so that running out of input
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word before getting to the end of the target word was counted as though the target word had been

recognized, so long as no spelling errors had been encountered or there were at least three

characters in the input word.

In command languages in general and in Unix in particular, files are often specified through the use

of widcard symbols. For instance "", which means any sequence of characters, can be used to

specify all the files beginning with "r" and ending with ".txt" through the lexical unit "r*.txt". We
incorporated interpretation of such wildcard characters into the lexical component of the COUSIN

parser, but have not yet been able to combine such interpretation with spelling correction, so that

wildcarded file descriptions are not spelling corrected if they do not match any existing files. An

example of the kinds of problem we ran into is that while "r*.txt" may be a reasonable spelling

correction for "r*.xt", "*r.xt" would probably not be, since the latter alternative would produce files
that were radically different from those specified by the erroneous input, while the former correction

would produce only files that were simple spelling corrections of those that the erroneous input could

have expanded to.

The kinds of lexical processing described in this section are highly specific and depend on

particular kinds of lexical items found only in interactive command languages and in some cases only
in the Unix command language. Nevertheless, these particular pieces of lexical processing turned

out to be crucial for adequate flexible parsing in the COUSIN interface. This suggests that, in general,
the construction -specific approach to parsing should extend down to the lexical level, so that a whole

range of lexical correction techniques, each specific to a particular class of lexical unit can be

invoked when lexical level errors occur. Indeed, it is difficult to see in several of the preceding

examples how adequate corrections could be made without highly specific and specialized correction
techniques. The lesson to be learned here seems to be that we should expect that any domain in
which we attempt error correcting parsing will give rise to such idiosyncratic lexical level problems,

and that we should be prepared to develop correspondingly specific techniques to take care of them.

6. Control Structures for Multiple Parsing StrategiesI
As described in Section 4, the two simple parsers, CASPAR and DYPAR, we constructed to

experiment with the use of different parsing strategies for different construction types showed that the

approach had considerable promise. CASPAR, for instance, showed the significant advantages that

can be obtained in parsing ill-formed case constructions by employing a construction- specific

strategy which treats case markers and case fillers differently (see3 for further details). In addition to

finding the construction- specific strategies valuable for flexible parsing, we also found that we could
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get superior performance in parsing grammatical input by using construction -speci fic techniques.
Using a construction- specific approach throughout also allowed us to integrate the parsing of
grammatical and extra- grammatical input.

Even though CASPAR and DYPAR were such positive experiences, they were still very simple
* parsers with very limited ranges of applicability. In particular, they were much too limited to provide

adequate linguistic coverage for a non-toy natural language interface, even for a typical restricted
domain. Therefore, after CA SPAR and DYPAR were completed around the end of 1981, we began to
look at ways of producing a parser, based on the same principles, but with a more adequate linguistic

coverage. We called the parser that we were aiming at, MULTIPAR. MULTIPAR's eventual
implementation is described in Section 8. To obtain the extended coverage while remaining based on
the same construction -specific ideas, it had to deal with many more construction types than CASPAR
or DYPAR, and therefore had to incorporate many more strategies than the two and three respectively
in those parsers.

More specifically, we established the following design goals for MULTIPAR:

a' . Integration of a large number of highly specific and specialized parsing strategies. There
a' may well be several strategies applicable in any given situation.

* Easy incorporation of new strategies into the existing set.

* Ability to parse bottom-up from the best information available. It is never possible to rely
absolutely on any specific piece or feature of a construction being correct.

* As much top-down control as possible. While bottom-up parsing is necessary to form an
initial hypothesis about what the structure of an input may be, it is inefficient once that
hypothesis has been formed.

1~ 0Clean separation between domain semantics and parsing strategies. This is most
important because of our intention to apply MULTIPAR to a significant number of
different domains (see the subsection on language definition in the proposed research
section).

The second and third of these goals were derived from our earlier experience with the FlexP parser
which demonstrated the importance of mixing top-down and bottom-up parsing in dealing with
ungrammatical input.

The key issue in meeting these design goals was the coordination of the various strategies that

would be involved in a way that could accommodate the top-down and bottom-up directionalities that
we required. DYPAR and CASPAR used two and three different parsing strategies respectively, and

coordination between these strategies was simple and "hard-wired" directly into the control structure

-%p1



26

of the parsers themselves. The much larger number of strategies needed to provide adequate
linguistic coverage and the need to make the addition of new strategies easy preclude this "hard-
wired" approach for MULTIPAR. Therefore, we expended significant effort between early 1982 and
late 1983 in developing a control structure which allows large numbers of strategies to cooperate on
and share information about the parsing of a given input.

The control structure we developed as a result of this work involves the following three kinds of

object:

" tasks: A task represents the goal of recognizing as much as possible of a given
subsequence of the input as a certain kind of grammatically specified object (e.g. a task
might be to recognize as much as possible between the second and seventh words of "is
the price of a display terminal more than a hardcopy terminal" as a (comparable-object>,
where (comparable-object> was a grammatical subcategory). Such tasks may specify
that the recognition is to be. left or right anchored if the whole subsequence cannot be
parsed as the desired object. MULTIPAR is driven at the top-level by a task to recognize
the whole of an input line as a grammatical super-category, which includes all complete
sentences as well as individual objects, and anything else the system being interfaced to
is prepared to interpret in isolation.

" strategies: A strategy is a method for recognizing a given grammatical constituent.
There may be several strategies applicable to any given grammatical category, and a
given strategy may apply to more than one type of constituent. Strategies are indexed by
grammatical category. Each strategy has a simple initial test based on pattern matching
to check applicability to a specific task (i.e. recognizing a given constituent in a given
context with possible left or right anchoring), plus a more complicated procedural test of
applicability to be applied if the pattern match succeeds. Each strategy has an indication
of the amount of grammatical deviation it is designed to cope with, which wilt correspond
roughly to the amount of effort needed to apply it. Strategies may also be limited to left or
right anchored recognition.

" hypotheses: An hypothesis is the result of applying a specific strategy to a specific task
and constitutes the result of the parsing attempt, thus specified. Hypotheses are
recorded globally in a blackboard-like'4 structure. Both successful and unsuccessful
attempts are thus recorded, and constitute a way of sharing effort between different
strategies. The successful ones are analogous to (partiall parse trees.

rhese three types of structure work together as follows:

1. The top-level task is set up as described above.

2. Given a task, all strategies whose indexing identifies them as suitable for that task are
identified, and grouped according to degree of grammatical deviation handled.

3. The strategies are applied in order of ascending ungrammaticality until one succeeds. All
strategies for a given level of ungrammaticality are applied (conceptually) in parallel.
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4. Application of a strategy means first checking for a precomputed result in the global
blackboard of hypotheses, then applying the pattern-match test, then the procedural test,
and then if that succeeds, the body of the strategy.

5. The body of a strategy can set up new tasks, and the strategy as a whole succeeds if the
sub-tasks succeed.

6. A task succeeds if one or more of its strategies succeed.

The following examples (drawn from the domain of a computer salesperson's assistant) show how

this control structure is intended to operate.

A very simple strategy is:

StrategyName: comparative-sentence

Recognizes: <complete-sentence>

Pattern: [<be> $X <comparative> $Y]

Body: set up subtasks of recognizing input segments represented by X and Y as
<comparable-object>s.

Most of the work in this strategy is done by the simple pattern-matching rule which is its initial test. To

see how it might operate consider the input
Is the price of a display terminal more than $100

The strategy would be applicable, and would isolate "the price of a display terminal" as X and "$100"

as Y. The two subtasks of parsing X and Y as <comparable-object>s would then be established, with

the first being parsed by a strategy which recognized constructions of the "(attribute> of <object)"

type, and the second which recognized strings beginning with a dollar sign and followed by digits as

sums of money. The strategy would also check that the two quantities were comparable before
reporting success, trying coercion at a more flexible stage, and thus making sense of "is a display

terminal more than $100".

A more complicated strategy is:

StrategyName: imperative-caseframe

Recognizes: <complete-sentence>

Pattern: [<action-word> $X] (a more flexible version would not be left anchored)

Body: Obtain the case frame of the action word. Scan the input segment represented by
X for case markers from that case frame. This divides X up into a number of
segments separated by case markers. Set up tasks to recognize objects of the
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type indicated by the preceding marker for each segment, making allowance for
direct and indirect objects.

This second strategy is very similar to the dominant strategy of the CASPAR parser. An example input
to which it would be applicable is:

replace the display terminal with a teletype

Here "replace" is the action word and "with" is a marker from its case frame. This isolates "the
display terminal" and "a teletype" which can be parsed as objects of the appropriate type, in this
case (component-set~s.

For an example of flexibility in response to ungrammatical input, suppose the case marker "with" is
missing, so that the two component phrases cannot be isolated. The strategy then sets up tasks to
recognize each of the missing case fillers in the string that it cannot split up. Since the strategies
always operate to recognize as much of the given subsequence as possible as the requested
category, but will ignore parts that they cannot deal with, the attempt to recognize (in left-anchored
mode) a component in "the display terminal a teletype", will recognize "the display terminal", fail to
recognize "a teletype", but isolate it, thus leading to its recognition on the second attempt to parse
still unrecognized strings as the fillers of unfilled case frame slots.

Of course, there is no guarantee, given the many roles that individual prepositions fill, that a case
marker that is found is really a case marker for the given case frame, as in:

repl ace the display terminal with a teletype with a paper-tape reader
Here both "with"s are found, leading to two different ways in which the input can be split up for
further parsing. The correct reading is finally preferred because it accounts for more of the input, the
strong domain constraints making it easy for the parser to refuse to accept "the display terminal with
a teletype" as a (component- set).

7. Taxonomy of Grammatical Deviations
In addition to appropriate control structures, a large-scale multi-strategy parser needs a variety of

parsing strategies. Given the goals of the project, we were particularly interested in strategies
designed to recover from ungrammatical input. Accordingly, we undertook in the latter part of 1983
an extensive examination of the various types of grammatical deviation that can occur for restricted-
domain interfaces and the parsing strategies necessary to recover from them. The resulting
taxonomy is presented in2, and will not be detailed here.

For each of the recovery strategies examined, ani attempt was made to assess the computational
framework necessary to implement it. This involved examining how the strategy might be
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implemented in each of three standard approaches to parsing, based on transition nets, pattern

matching, and case frame instantiation respectively. The first conclusion was that case frame

instantiation was generally superior to the other two approaches as a basis for recovery strategies.

Further examination of the recovery strategies led us to formulate a set of four characteristics that a

parsing process needs to have to form a good basis for recovery strategies. We concluded that case

frame instantiation outperformed transition networks and pattern matching because it satisfied the

characteristics more closely. The characteristics are:

* The parsing process should be as interpretive as possible. There was a clear need for a
parsing process to "stand back" and look at a broad picture of the set of.expectations (or
grammar) it is applying to the input when an ungrammaticality arises. The more
interpretive a parser is, the better able it is to do this. A highly interpretive parser is also
better able to apply its expectations to the input in more than one way, which may be
crucial if the standard way does not work in the face of an ungrammaticality.

* The parsing process should make it easy to apply semantic information. Semantic
information is often very important in resolving ungrammaticality, and the semantic
constraints available in restricted domain languages are usually very powerful.

o The parsing process should be able to take advantage of non-uniformity in language.
Recovery can be much more efficient and reliable if a parser is able to make use of
variations in ease of recognition or discriminating power between different constituents
of a construction. This kind of "opportunism" can be built into recovery strategies.

9 The parsing process should be capable of operating top-down as well as bottom-up.

There are recovery strategies where each of these modes is essential.

This analysis was highly supportive of our preference for a multi-strategy, construction-specific

approach. While case frame instantiation is the uniform approach to parsing that fits the above

characteristics best, a multi-strategy approach (in which case frame instantiation is heavily

represented) fits them even better because:

* The required high degree of interpretiveness can be obtained by having several different
strategies apply the same grammatical information to the input in several different ways.

9 Strategies can be written to take advantage of particular aspects of non-uniformity
among the constituents of individual construction types.

" Some strategies can operate top-down and others bottom up.

,1
.1
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8. MULTIPAR
This subsection describes the implementation of MULTIPAR, our intitial version of a large-scale

restricted-domain parser using multiple construction-specific parsing strategies. MULTIPAR was V

implemented and refined into the form described here during the period early 1984 through late 1985.

It can be seen as the culmination of the work started with FlexP, and continued through CASPAR,

DYPAR, and the other theoretical investigations described above. It represents an important step

forward in the parsing of ungrammatical input for restricted domains. We describe first MULTIPAR's

control structure, then the domain entity descriptions on which MULTIPAR's parsing strategies are

based, and finally show by means of a worked example, just'how MULTIPAR operates on some

ungrammatical input. Further details can be found in5 and14 .

8.1. MULTIPAR control structure

Like most natural language parsers, MULTIPAR operates by searching through a space of possible

parses for a given input. The size of the search space depends on the number of local ambiguities

that are encountered during the parsing process. Because MULTIPAR is expected to parse

ungrammatical input, it is typically confronted with a search space that is much larger than that

explored by conventional parsers. Unlike the conventional systems, MULTIPAR cannot simply reject 'p

a partial parse when a grammaticality constraint is violated. Instead, various recovery techniques are

applied. This subsection describes how MULTIPAR controls the exploration of this large search

space. The techniques used can be seen as further developments, based on intervening experience,

of the design described in Section 6.

If the best parse is to be found in a timely manner, the exploration of alternative paths in the search

space must be carefully controlled. For example, spelling correction should be tried before

hypothesizing a missing word, and hypothesizing one word is preferable to hypothesizing five.

Furthermore, if a strategy fails to find a correct parse for some input, it does not mean that the

recovery actions should be immediately invoked. It may be that some other strategy will find a

grammatical parse; that strategy should be given its chance before any recovery actions are

attempted.

To control the exploration of the search space, competing alternatives within a strategy are

explicitly specified using SPLIT statements. When a SPLIT statement is encountered the computation

divides into parallel branches: each branch has a flexibility increment indicating the degree of

ungrammaticality added by the associated action. A separate partial parse is generated along each

branch, and each computation proceeds from the SPLIT statement independently of the others.

S
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(Split (+0 actionA)
(+I actionB)
(+3 actionC)

Execution of the statement above produces a three-way branch in the search tree. Alternative A

does not result in a gain in flexibility (implying grammaticality) of the associated parse. Alternatives B

and C will result in gains of one and three respectively.

The flexibility level of a partial parse is the sum of all flexibility increments used to achieve the parse.

The MULTIPAR control structure guarantees that parses are attempted in strict flexibility order and

generates all parses at the lowest flexibility level at which any parse can be found. In particular, if a

grammatical parse can be found, then all and only grammatical parses will be generated. 1 1 the

example above, alternative A requires no increase in flexibility and therefore it immediately continues

execution. Because alternatives B and C are associated with positive flexibility increments, they are

put on an agenda for later consideration. If no parse succeeds at the current flexibility level, then the

alternatives at the + 1 level are attempted (including alternative B). If no parse is found at the + 1

level, then the + 2 level alternatives are tried, and later, if necessary, the + 3 alternatives (including

alternative C).

8.2. MULTIPAR entities

MULTIPAR is an entity-oriented parser. As described in 7, entity-oriented parsing is an approach to

restricted domain natural language processing in which the parser is driven by a set of definitions of

domain entities (objects, operations, and states). The entities are defined at a high level of

abstraction, primarily in terms of other component entities. This approach to parsing is well adapted

to dealing with ungrammatical input; it allows a parser to interpret the abstract entity definitions in a

variety of ways so that it can look for the entity components in places other than the syntactically

correct ones.

An example of an entity definition used by MULTIPAR is:

I The non-determinism provided by the SPLIT statement is also exploited for handling normal ambiguities. When a strategy
finds that a parse is ambiguous. a separate branch is created for each alternative parse. +0 flexibility increments are used in
this case.
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(EntityName MoveCommand
SemanticCases (

Object (FileObjDesc or DirectoryObjDesc)
Source (DirectoryObjDesc or LogicalDeviceObjDesc)
Destination (FileObjDesc or DirectoryObjDesc)
Location (DirectoryObjDesc or LogicalDeviceObjDesc))

Constraints
(Destination FileObjDesc > Object FileObjDesc)
(Object DirectoryObjDesc > Destination DirectoryObjOesc)
(Object DirectoryObjDesc > Source LogicalDeviceObjDesc)
(Object DirectoryObjDesc > Location LogicalDeviceObjDesc)
(Required Object Destination))

SurfaceForms
(SFName Icf-Canonical
Head <movehead>
DirectObject Object
Cases (

(Preposition <sourcepreps>
Bind Source)
(Preposition <destpreps>
Bind Destination)
(Preposition <locpreps>
Bind Location))))

InstanceTemplate (
Action 'MOVE
Deviations Deviations
Source (

IsA (IsA in Object)
Name (Name in Object)
Extension (Extension in Object)
Directory (Directory in Object or

Directory in Source or
Directory in Location)

LogicalDevice (LogicalDevice in Object or
LogicalDevice in Source or
LogicalDevice in Location)

ObjDesc (Description in Object)
SourceDesc (Description in Source)
LocDesc (Description in Location))

Destination (
IsA (IsA in Destination)
Name (Name in Object or Name in Destination)
Extension (Extension in Object or Extension in Destination)
Directory (Directory in Destination or

Directory in Location)
LogicalDevice (Log4calDevice in Destination or

Log:calDevice in Location)
DestDesc (Description in Destination)
LocDesc (Description in Location))))

This defines the move command for an operating system interface. Like all entity definitions, in

addition to its name it has four main parts:

* SemanticCases: this defines the basic structure of the entity in terms of the other

-- w,
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entities that are its components. MoveCommand, for instance, has an object (the file 2 or
directory to be moved), a source (the directory or logical device to move it from), a
destination (the file or directory to move it to), and a location (the directory or logical
device in the context of which the move takes place). These semantic cases (or case
frame) do not tell MULTIPAR how to recognize the entity in an input utterance, they just
define what other entities need to or may be found in the input as part of finding the entity
whose definition it is. The general format is a list of case names and filler types.

e Constraints: The constraints specify both relations that are required to obtain between
cases and predicates that obtain on individual cases for any specific instance of an entity.
The first constraint for MoveCommand says that if the Destination case is filled by a file,
then the Object case must also be filled by a file. The following three constraints have
analogous interpretations. The final constraint says that the Object and Destination
cases are required to be present for any instance of MoveCommand. MULTIPAR
enforces constraints of both types insofar as it can. In other words, it prefers parses in
which the constraints are satisfied, but will accept (as a grammatical deviation) inputs in
which the constraints are violated.

e SurfaceForms: This component of an entity definition tells MULTIPAR how an entity can
be described in English, i.e., it tells MULTIPAR where in the input to find fillers for the
SemanticCases, plus possibly some words identifying the entity itself (e.g. "move" or
"transfer" in our example). The information about where to look for the SemanticCases
is implicit in the specific parsing strategies associated with the SurfaceForm name (Icf.
Canonical, or imperative case frame canonical, above). [Of course, a strategy can look in
more than one place, depending on the amount of grammatical deviation it is set up to
deal with.1 Although there is currently a 1-to-1 mapping between SurfaceForm and
strategy, it is not necessary that this be the case. A strategy can know how to parse more
than one surface form and/or a SurfaceForm can be used by more than one strategy.

The SFName is the only attribute common to all SurfaceForms. The other attributes are
specific to particular surface forms. In the above example, the Head attribute defines the
imperative verb to be used to identify the MoveCommand, the DirectObject attribute says
which SemanticCase is the syntactic direct object of the imperative verb, and the Cases
attribute says which prepositions are used to mark the other SemanticCases in English
input. Symbols like <movehead> are non-terminals in a grammar used by the DYPAR
parser mentioned earlier which provides pattern matching services to MULTIPAR. They
expand in the course of computation (e.g. <movehead> -> move I transfer). SurfaceForm
slotfillers that are not surrounded by O's are SemanticCase names and tell the strategy
which SemanticCase to bind the information to. Consider the DirectObject case of the
Icf-Canonical SurfaceForm in the MoveCommand. The strategy that knows how to parse

this kind of surface form will be passed an instance of the movecommand entity definition
and an input segment to work on. When it finds a noun phrase in the input unmarked by
prepositions, it will check the surface form to find out what SemanticCase it should be
trying to fill. Since the Object SemanticCase can be filled by either a FileObjDesc or
DirectoryObiDesc, it will try to parse the unmarked segment as each of these. This will
result in calls to strategies that know how to handle the SurfaceForms in the entity
definitions of FileObjDesc and DirectoryObjDesc respectively. In general, an entity may

2 RleO~biesc means tile object description; other abbreviations are similar
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have more than one surface form corresponding to different forms of surface expression
for the same underlying semantic cases.

* InstanceTemplate: This information is used when a strategy has finished parsing an
entity. It tells MULTIPAR the final representation to use for the entity instance thus
produced. It is essentially a method for reformatting, canonicalizing, and pulling
information out of subordinate entity instances to compose the current one. The
slotfillers in the InstanceTemplate act as directions to a routine that uses the bindings to
the SemanticCases produced by the strategy. A single word means the value of the slot
is exactly what is bound to the SemanticCase. A list without "or" means the value of the
slot is whatever is found in the slot with that name in the InstanceTemplate bound to the
SemanticCase. (e.g. IsA in Object says look at the IsA field in whatever kind of entity is
bound to Object - if the field isn't found, the slot = nil). Finally, directions that have one
or more "ors" act as deterministic disjuncts. Each instruction is followed until a non-nil
value is found. In this way, "move [c410jf90]foo to my directory" produces the same
InstanceTemplate as "move foo from [c410jf90] to my directory." In the former, the
directory name for the source of the move is found in the FileObjDesc InstanceTemplate
bound to the Object SemanticCase. In the latter, the directory name for the source of the
move is found in the DirectoryObjDesc InstanceTemplate bound to the source
SemanticCase. A final note about InstanceTemplates: each has a special slot called
"deviations" which has no corresponding SemanticCase. This slot acts as a repository of
information about the recovery actions taken by strategies.

Entity definitions apply to objects as well as actions. For instance, the entity definition for file

objects is:
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(EntityName FileObjDesc
SemanticCases (

Quantifier Pattern
FileName FileNameDesc
FileExtension FileExtensionDesc
FileDirectory DirectoryObjDesc
FileLogicalDevice LogicalDeviceObjDesc
Owner OwnerDesc
Size SizeDesc)

Constraints ()
SurfaceForms

(SFName Ncf-Canonical
Head <FOD-head-forms>
NonAVCases (Quantifier <quant> !q)
AttValCases (Simple FileName or FileExtension or Owner or Size

Complex FileDirectory or FileLogicalDevice))
(SFName Ncf-System
Head FileNameDesc
Bind FileName

NonAVCases (Quantifier <quant> !q)
AttValCases (Simple FileExtension or Owner or Size

Complex FileDirectory or FileLogicalDevice)))
InstanceTemplate

IsA 'FILE
Deviations Deviations
Name (FileName in FileName)
Extension (Value in FileExtension or FileExtension in FileName)
Directory (DirectoryName in FileDirectory or

DirectoryName in FileName)
LogicalDevice (Value in FileLogicalDevice or

LogicalDeviceName in FileDirectory or
LogicalDeviceName in FileName)

Description (
Quantifier Quantifier
Owner Owner
Size Size)))

This example illustrates some points not apparent in the entity definition for MoveCommand. In

particular, note that the Quantifier SemanticCase is filled by a pattern, rather than another entity, i.e. it

is primitive. Also, FileObjDesc has two SurfaceForms. Ncf-Canonical is designed to recognize input

like "the files3 with extension Isp in directory [c410jf90]", while Ncf-System is designed to recognize

descriptions including proper names, such as "foo.lsp in [c410jf90]".

3<F00-Head-forms> expands to file I files I program I programs
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8.3. An annotated example

To make clear how all the components of MULTIPAR combine and interact to parse both well-

formed and ungrammatical input, we include the following extended example. In the discussion that

follows, function calls and strategy names are written in boldface type; entity slots and values are

given in italics. The notation "word 1 ...wordn " refers to the portion of the input utterance starting with

word, and ending with word n .

Consider the behaviour of the system when the user requests a parse of:

Move the accounts directory the file Data34

Step 1. Initialization.

Before any part of the input is examined, the control tree is initialized as in Figure 1, label (a)5. Here,

MULTIPAR sets up a branch for each of the commands in its current vocabulary. Note that no

flexibility increment is added to the initial value of zero because no deviation has occurred. The

control chooses the first level 0 branch on the agenda for continuation.

[FIGURE I GOES HERE]

Step 2. Try to parse "Move...Data3" as a DeleteCommand.

ParseEntity (Figure 1,(b)) is a function that maps entity types to strategies. A request for a

command entity could result in the trial of a number of different strategies. At present, only top-down

versions of the parsing strategies exist, and calls to ParseEntity that look for commands are always

mapped into calls to the imperative caseframe strategy (Figure 1,(c)). ImperativeCaseFrame-Strat

will be unable to find an appropriate verb for the DeleteCommand entity and will fail without

scheduling any alternate branches (i.e. this can be viewed as a non-recoverable error for the top.

down strategy). Failure means that processing is continued by the control structure which eliminates

this branch (Figure 1,(d)) and chooses another (Figure 1,(e)). Of course, the new branch also

contains a call to ParseEntity; this call is mapped as above (Figure 1,(f)).

Step 3. Try to parse the input as a MoveCommand.

ImperativeCaseFrame-Strat knows how to use the /cf-canonical SurfaceForm to interpret the

input. In the MoveCommand entity definition shown in section 8.2, this is the only SurfaceForm. As

4 The grammatically correct version of this sentence is "Move to the accounts directory the file Data3."

5 Hereafter, simply Figure 1,(a).
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linguistic coverage is extended to include, for example, declaratives and interrogatives, new

SurfaceForms must be defined. ImperativeCaseFrame-Strat could be expanded to interpret all

top-level forms or each form could be provided with its own "expert".

The first action that ImperativeCaseFrame-Strat takes is to use the Head field in the

SurfaceForm to search for a legal verb.6 It finds "Move" and the unparsed segment is reduced to "the

accounts directory the file Data3". The next step is to call a routine to fill the SemanticCases of the

MoveCommand.

Step 4. Use ImperativeCaseFrame-Cases to fill MoveCommand's SemanticCases.

ImperativeCaseFrame-Cases (Figure 1,(f)) is not a strategy itself but only a part of the top-down

imperative caseframe strategy. The distinction is important because the responsibility of a strategy is

to return an "instance list," i.e. one or more instantiated Instance Templates.

ImperativeCaseFrame-Cases will return lists of consistent SemanticCase bindings which

ImperativeCaseFrame-Strat will use to fill in InstanceTemplates when building its instance list.

When filling cases we impose no order on their appearance in the utterance, nor do we fill required

cases first (doing so would eliminate possible parses at flexibility levels greater than 0). As we try to

expand a partial parse the still-unfilled cases may be constrained in the kinds of values they can take

on by the values bound to those cases already filled. The Constraints field of the entity definition

specifies the requirements. Of course, at this point no cases have been filled and no constraints

apply. The unparsed segment, "the accounts directory the file Data3", is examined in two ways:

a. The first case we try to fill is the direct object
which is unmarked. (Figure 1 ,(g) and (h))

b. The first case we try to fill is one of the marked cases.
(Figure 1 ,(i))

Consider step 4.a. We are attempting to interpret some portion of the segment as the Object

SemanticCase of the MoveCommand. Since the entity definition shows that an Object can be an

instance of either a Fi/eObjDesc or a DirectoryObjDesc, we will try each of these in turn (Figures 2,(a)

and 3,(a)).

6 Keep in mind that at each step it is possible to have more than one interpretation of the input. Thus, if our input had been,
"Move the file called transfer to dskb," the initial -scan for a verb would have resulted in two partial parses -- one catching
move" and the other catching "transfer".

"I ~ ;~.SP S/~ ~ ~ ~ 4SP I".1 *- - ~ d~' ~ NO
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Step 5. Continue step 4.a.; try to parse Object as a FileObjDesc.

ImperativeCaseFrame-Cases wants to find a FileObjDesc in "the accounts directory the file

Data3". To do so, it must call ParseEntity with a request for a noun phrase that can be interpreted as

a FileObjDesc. Referring to the entity definition for FileObjDesc (section 8.2) we see that there are

two SurfaceForms for parsing nominal caseframes. Each has its own associated strategy so this call

to ParseEntity results in a SPLIT (Figure 2,(b)) We will examine only the path labelled

NominalCaseFrame-Strat-Canonical (Figure 2,(c)).

[FIGURE 2 GOES HERE]

Step 6. Find the Head and Quantifier of the noun phrase.

As with imperative caseframes, the first action taken to fill a nominal caseframe is to locate the -

Head. NominalCaseFrame-Strat-Canonical finds "file" as a possible head and breaks the

remainder of the input into prenominal and postnominal segments. The strategy then looks for the

quantifier/determiner at the left end of the prenominal segment. The value of the NonAVCases 7 field

is interpreted: call the pattern-matcher with the prenominal segment and the pattern "(quant>," and

if the pattern-matcher returns the variable "!q" bound to some value, that value is the filler for the

Quantifier SemanticCase. With the NonAVCases finished only the AVCases remain. "Accounts

directory the" now constitutes the prenominal segment and "Data3," the postnominal segment. We

call NominalCaseFrame-Cases, a sub-routine of NominalCaseFrame-Strat-Canonical, to begin

filling cases from the prenominal segment (Figure 2,(c)).

Step 7. Parse the prenominal segment, "accounts directory the".

The only FileObjDesc case we will be able to fill from this segment of the input is FileDirectory. The

entity definition shows that this case is an instance of a DirectoryObjDesc. After a sequence of calls

(Figure 2,(d)) a sub-invocation of NominalCaseFrame-Strat-Canonical will return an instance list

with a single instance:

(IsA DIRECTORY
Name (accounts))8

Thus, we return to step 6 (Figure 2,(c)) with one case filled and the word "the" unused. I

7 Non-Attribute-Value Cases

8 The Instance Template has many more fields in it; only those with a non-nil value are shown.
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Step 8. Parse the postnominal segment, "Data3".

We are interested in extending any partial parses created in step 7 by using the postnominal

segment to fill any unbound SemanticCases. Figure 2,(e) shows that a succession of calls results in

filling the FileName using the Attribute-Value strategy.

Step 9. Return to step 4, Figure 1,(g).

Steps 7 and 8 produced one consistent set of bindings for two SemanticCases in the

MoveCormand with one word leftover. Although there are unfilled cases, we have run out of input on

the right. Thus, the instance list of FileObjDescs has only one element:
(IsA FILE

Name (Data3)
Directory (accounts)
Description (

Quantifier (the)))

Referring to step 4.a. (Figure 1 ,(g)), the possible interpretations of the input such that the Object is a

FileObjDesc have been exhausted. It remains to examine what happens when we look for an Object

that is a DirectoryObjDesc. Again, we will call ParseEntity, split and suspend one of the calls, and

examine the branch labelled NominalCaseFrame-Strat-Canonical (Figure 3,(a) through (c)).

[FIGURE 3 GOES HERE]

Step 10. Continue step 4.a.; try to parse the Object as a DirectoryObjDesc.

We pick up the head, "directory," and the quantifier/determiner case as in step 6. This leaves the

word "accounts" in the prenominal segment and "the file Data3" in the postnominal segment. The

Attribute-Value strategy finds "accounts" as the Name. No other DirectoryObjDesc cases can be

filled, so this step returns:

(IsA DIRECTORY
Name (accounts)
Description

Quantifier (the)))

Step 11. Return to step 4.

Consider Figure 4,(a) which corresponds to the "OR" in Figure 1,(f). The computations shown in

Figures 2 and 3 have given us two partial parses with the direct object filled; once by a FileObjDesc

with the word "the" leftover and no input left to fill the other cases of the MoveCommand (Figure
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4,(b)), and once by a DirectoryObjDesc with "the file Data3" leftover (Figure 4,(c)). As we try to extend

this second partial parse, we have only marked cases remaining in the SurfaceForm. Since there is

no marker at the beginning of the remaining segment we have encountered our first violated

expectation. The recovery action associated with this failure is to hypothesize the existence of the

missing case marker. Thus, for each of the three remaining SemanticCases we schedule a .

continuation that charges three flexibility points for the deviation (Figure 4,(d)). Note that if some

other branch of the search tree with cumulative flexibility less than three succeeds in consuming the

entire input segment, the branches just spawned will never be reactivated.

[FIGURE 4 GOES HERE]
a-

Step 12. Return to step 4.b. (Figure 4,(e))

Consider what happens when we try filling the marked cases of the MoveCommand first (Figure 1,(i)

corresponding to Figure 4,(e)); the situation is identical to the one just outlined. For all cases other

than the direct object, the segment "the accounts directory the file Data3" must have a left marker.

Since it has none, we hypothesize a branch for each marked case at the current flexibility level plus

three (Figure 4,(e)).

Step 13. All the possibilities for the MoveCommand have been examined.

We have succeeded in finding two ways to fill the cases of the MoveCommand. Before we can

return the partial parses from ImperativeCaseFrame-Cases to ImperativeCaseFrame-Strat we

must check whether the Required cases, as specified by the Constraints field, have been filled.

Indeed, each of the partial parses is missing the required Destination case, a violated expectation.

The recovery action associated with this error is to suspend each of these partial parses and charge

two flexibility points per missing required case for their continuation (Figure 4,(f) and (g)). Since no

parses had all the required cases, the level 0 continuation of ImperativeCaseFrame-Cases returns

a failure signal to ImperativeCaseFrame-Strat.

ImperativeCaseFrame-Strat returns an instance list with a single instance whose Source and

Destination fields are nil. This signifies that the only part of the strategy that succeeded at level 0 was

finding the verb. Since there is unused input, the top-level of MULTIPAR interprets this instance as a

failure and signals this to the control.

Step 14. Exhaust level 0 of the agenda looking for a non.deviating parse.

V N N
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The control structure takes over and continues in turn each branch suspended at level 0. Those

containing requests for imperatives (Figure 1,(j)) fail immediately as in step 2. The other level 0

branches were left suspended by the SPLITs in Figures 2 and 3; these also fail.

Step 15. Exhaust levels 1 and 2 of the agenda.

Having tried all the branches in level 0 without success, the flexibility level is incremented and the

control structure tries to choose a path suspended at level 1. Our example did not spawn any level 1

branches (single spelling corrections), so the flexibility level is incremented again. There are two

branches at level 2, both in the same predicament (Figure 4, (f) and (g)); each has a missing required

case and leftover input. If there had been no leftover input (as in "Move foo"), they would have

succeeded at this level.9 However, since no further recovery actions apply, each of these branches

fails without adding to the control tree.

Step 16. The control increments the flexibility level to 3.

There are two sets of branches at this level:

a. The Object case is filled and the missing marker has been
0 hypothesized before "the file Data3". (Figure 4,(d))

b. No cases are filled and the missing marker has been hypothesized
% before "the accounts directory the file Data3". (Figure 4,(e))

Step 17. Continue 16.a. (Figure 4,(d))

The Object case of the MoveCommand has been bound to a DirectoryObjDesc with the Name field

bound to "(accounts)". Hypothesizing the appropriate kind of marker for each of the remaining cases

gives:

a. Source: Move the accounts directory [from] the file Data3.

b. Destination: Move the accounts directory [to] the file Data3.

c. Location: Move the accounts directory [in] the file Data3.

The single recovery action of hypothesizing a missing marker is not enough for any of these

branches to succeed. Each would be rescheduled at least one more time. If MULTIPAR allowed the

9 Although consuming the entire input would have guaranteed success, note that if some branch with cumulative flexibility of
0 or 1 had succeeded, these branches would never have been retried.

v4 e
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control structure to search the space indefinitely, 17.a. would eventually succeed at flexibility level 8

(3 points for a missing marker, 3 points for a constraint violation' 0 , and 2 points for a missing required

case). 17.b. would eventually succeed at level 6 (1 missing marker, 1 constraint violation) and 17.c. at

level 8 (1 missing marker, 1 missing required case and 1 constraint violation).

Step 18. Continue 16.b. (Figure 4,(e))

There are three branches remaining, one for each of the marked cases in the MoveCommand, with

no cases yet filled. Allowing indefinite expansion, the following would occur:

Source:
a. Move [from] the accounts directory the file Data3.

eventually succeeds at + 5; 3 for missing marker, 2 for
missing case

b. Move [from] the accounts directory [to] the file Data3.
eventually succeeds at + 8; 2 missing markers, 1 required case

c. Move [from] the accounts directory [in] the file Data3.
eventually succeeds at + 13; 2 missing case markers, 1 constraint
violation and 2 missing required cases

Destination:
a. Move [to] the accounts directory the file Data3.

* * * SUCCEEDS at this level (level 3) * * *
b. Move [to) the accounts directory [from] the tile Data3.

eventually succeeds at + 8; 2 missing case markers and
1 missing required case

c. Move [to] the accounts directory [on] the file Data3.
eventually succeeds at + 13; same as Source c.

Location:

a. Move [in] the accounts directory the file Data3.
eventually succeeds at + 5, 1 missing marker and 1 missing case

b. Move [in] the accounts directory [to] the file Data3.
eventually succeeds at + 8, 2 markers, 1 case

c. Move [in] the accounts directory [in] the file Data3.
eventually succeeds at + 13, same as Source c

Step 19. A successful path is found at level 3.

Hypothesizing the existence of a marker for the Destination enables lmperativeCaseFrame-St rat

to continue the second branch of Figure 4,(e). Now "the accounts directory" can be picked up as the

Destination and "the file Data3" as the unmarked direct object. Since both required cases are bound

10 In Constraints:(Object DlrectoryObiDesc > Source LoglcalDevleeOtlDeW).

.. ~~~ . . . . . .~ .- ' .0
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and no input remains, MULTIPAR return the following instance as its representation of the input:

(Action MOVE
Deviations (MissingMarker Destination)
Source(

IsA FILE
Name (Data3)
Description

Quantifier (the)))
Destination (

IsA FILE
Name (Data3)
Directory (accounts)
Description(

Quantifier (the))))

9. Applications to Speech Input

9. 1. Special characteristics of speech input
Spoken natural language input to a computer is characterized by large amounts of error, much

more error than found in typed natural language input. These errors stem both from the speaker and

* from imperfect recognition. Given the large potential advantages to achieving robust speech

* recognition, we attempted to further extend and develop our flexible parsing techniques by applying

them to spoken input. This proved to be a fruitful area of application, as described below. The work

ran from early 1985 to the end of the contract in June 1986. It was done in conjunction with a

* concurrent DARPA-funded speech project in the Carnegie-Mellon Computer Science Department.

* Further details can be found ins.

Not surprisingly, it is not possible to apply techniques developed for parsing typed natural language

to spoken input in a completely straightforward manner. We list some of the problems below. We

assume the existence of a speech recognizer that will transform a spoken input into a word lattice - a

set of hypothesized words that may be present in the input, together with their starting and ending

positions in the input signal arnd the probability of each word being correct. In general, there will be

several competing word hypotheses for each point in the input signal.

*lexical ambiguity: More than one word may be produced by the speech recognizer for
a given segment of speech. If the ambiguities were simply between dillerent word
choices, this problem could be handled by the techniques used to handle word sense
ambiguity in natural language processing (e.g. "bank" may mean a place to put money,
the side of a river, an action of placing trust, an action of tilting a vehicle left or right, etc.).
However, not only can multiple words be hypothesized, but the competing hypotheses
can occur at overlapping, adjoining, or separate segments of the input signall producing
no consistent set of word boundaries. There is no parallel phenomenon in processing
typed natural language.
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*probability measures: Speech processing systems typically provide information about
the relative likelihood of the correctness of each of their word hypotheses. These
probabilities or scores are based on criteria such as the quality of the match between
speech signal and phonemic dictionary expectations. Since a speech recognition system
may hypothesize many words for the same segment of speech, and since the scores for
these words may differ considerably, these scores are important in limiting the search of
a parser. However, there is no natural way to make use of such likelihood scores through
most of the current natural language processing techniques.

* unrecognized words: Because of hurried pronunciation or co-articulation effects, a
speech recognizer may completely fail to recognize some of the words in an input
utterance. The missed words are usually (though not always) short, unstressed.
"function" words rather than longer "content" words. This kind of omission is not
handled by standard natural language processing techniques.

e ungrammatical input: In addition to the word omissions that are artifacts of imperfect
word hypothesization by a speech processor, spoken input tends to contain more real
grammatical deficiencies than typed input. Once spoken, words cannot be easily
retracted, but typed utterances can be corrected if the user notices the error in time.
Thus, fail-soft techniques for recovery from all kinds of grammatical errors in natural
language processing are particularly pertinent when extended to the interpretation of
spoken input.

These difficulties argue against the simplistic approach of taking a speech- recognition module and

attaching it to a traditional natural language analyzer designed to work from words entered as

unambiguous ASCII characters. No matter how good each may be in isolation, the two will not

integrate successfully if the latter cannot provide semantic expectations to the former, cannot handle

massive lexical ambiguity, or cannot tolerate errors of recognition and of grammatical deviation.

Moreover, with adequate integration, feedback from a natural language analysis component can
substantially improve the performance of a connected speech recognizer. This performance

enhancement is badly needed since no present connected speech recognition method comes close

to human abilities. And even humans fail to recognize a substantial fraction of function words

extracted from their surrounding context. The application of linguistic knowledge and semantic

expectations through natural language analysis techniques is thus needed to complement acoustic

recognition methods by constraining the set of possible (and sensible) interpretations of the words in

an input utterance.

9.2. Applying casetrames to speech input%
In this subsection, we discuss the ways in which we have adapted our caseframe-based techniques

developed in the context of typed input. The two key observations in performing these adaptations

were:

'. r Vr.
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" caseframes of the kind we have described contain the right amount of information at the
right level of abstraction to parse restricted-domain spoken input;

" the algorithms that have been developed for using such caseframes in parsing typed
natural language input are unsuitable for spoken input because the algorithms rely on the
presence of small function words that are recognized at best unreliably by word
hypothesizers. In particular, many of the strategies that we have used for typed input
(including in FlexP, CASPAR, and MULTIPAR) rely on the presence of prepositions,
which tend to be short function words.

Based on these observations, we have produced a trial implementation of an approach to parsing

spoken input from semantic caseframes. The approach applies caseframes to the input, but does it in

a novel way. The essence of the approach is to:

1. examine the lattice of words hypothesized by the speech recognizer for those that
correspond to caseframe headers

2. combine all the caseframes corresponding to the words found in all semantically and
syntactically plausible ways

3. for each caseframe combination thus formed, attempt to account for the gaps between
the caseframe header words that were involved in its formation by parsing words from the
gaps against empty semantic and syntactic roles in the caseframe combination

4. select as the final parse of the input those caseframe instances that best account for the
input, based on how much of the input they cover and the acoustic scores of the words in

that parse.

This multi-stage approach avoids the problems of the caseframe parsing algorithms for typed input by

anchoring the parse on caseframe headers. Caseframe headers are verbs (for clausal caseframes)

and nouns (for nominal caseframes). These are content bearing words that tend to be stressed in

speech and are often multi-syllabic. Both these qualities improve their chances of recognition above

that of short, unstressed function words. The points around which the parse is anchored are thus

likely to be highly correlated with the words in the input that are most certain acoustically.

An advantage associated with working from caseframe headers is that the resulting caseframe

combinations form a ready-made semantic interpretation of the input. The interpretation is typically

incomplete until it is filled out in the subsequent gap-filling stage. However, if the recognition of some

or all of the remaining words is so poor that the semantic interpretation is never fully completed, then

the parser still has something to report. Depending on the application domain, a skeleton

interpretation of this kind could be sufficient for the application, or would at least form the basis of a

focussed request for confirmation or clarification to the user6 .
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In what follows, we examine in more detail our implementation of the approach outlined above, The
flexible parser we have implemented for this application operates in the context of a complete speech

understanding system that handles continuous speech with a 200 word vocabulary in an electronic
mail domain.

9.2.1. Example caseframes

Because of experience gained in previous phases of the project, the caseframes used for speech
parsing are somewhat different from those used previously. In particular. they incorporate lessons
learnt in making the caseframe definitions more intuitive in terms of the restricted domain which they

describe. Accordingly, we describe the formalism used.

#S( ED
Name ForwardAction
Type verb
SC (

#S(SC
Name Agent the sender
InstanceOf (MailAdrOesc)
SyntaxCase (subject)

#S(SC
Name MsgObj ; a message
InstanceOf (MsgObjDesc)
SyntaxCase (DO)
)

#S(SC
Name MsgRecipientObj ; the receiver
InstanceOf (MailAdrDesc)
SyntaxCase (10 PrepO)
CaseMarker (to)

#S(SC
Name CCRecipientObj the CarbonCopy
InstanceOf (MailAdrDesc) receiver
SyntaxCase (PrepO)
CaseMarker (ccing copying)
)

Constraints #S(constraint
requiredSC (MsgObj MsgRecipientObj Agent)

HeadForms (forward resend)

Figure 1: Caseframe for forward

Figure 1 defines the forward action of an electronic mail system. The caseframe is identified as a
verb or clausal caseframe corresponding to the verbs (HeadForms) "forward" or "resend". It also
has four cases: Agent (the person doing the sending), MsgObj (the message being forwarded),

% % n
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MsgRecipientObj (the person the message is being forwarded to), and CCRecipientObj (the people

who are to get a copy of the forwarded message). The MsgObj case must be filled (InstanceOf) by a

MsgObjDesc (defined by another caseframe, see below), and the other cases must be filled by a

MailAdrDesc (the caseframe representing a person or "mail address"). All the cases are required,

except CCRecipientObj, which is optional. In addition, to this purely semantic information, the

caseframe contains some syntactic information: the Agent case is manifested as the syntactic

subject; MsgObj as the direct object (DO); MsgRecipientObj as either the indirect object (10) or as the

object (PrepO) of a prepositional phrase, whose preposition (CaseMarker) is "to"; CCRecipientObj as

a prepositional phrase with "prepositions" either ccing or copying.

#S(ED
Name MsgObjDesc
Type Noun
SC (

#S(SC
Name Descriptors
Pattern (new recent old unexamined examined)
SyntaxCase (prenominal)
)

#S(SC
Name Determiners
Pattern (the this that any a every)
SyntaxCase (prenominal)
)

#s(sC
Name MsgOriginObj ; where the mail
InstanceOf (MailAdrDesc) ; came from
CaseMarker (from)
SyntaxCase (PrepO)

#S(SC

Name TimeObj
InstanceOf (HourDesc MonthDesc DayDesc)
CaseMarker (from before after since on at)
SyntaxCase (PrepO)

))
HeadForms (message mail)
)

Figure 2: Caseframe for message

In addition to actions, we also use caseframes to describe objects Figure 2 shows a nominal

caseframe for the message object of our electronic mail system. This has essentially the same form

as the verb caseframe, except that its HeadForms correspond to the head nouns of a noun phrase

describing an electronic mail message. In addition, the Descriptors case has a new SyntaxCase,

prenominal, which implies that the elements of Pattern (new, recent, etc.) may appear in the adjective

position in this caseframe.

-J. 'r 'rpr r r P
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9.2.2. The word lattice

The input to our caseframe speech parser can be viewed as a two-dimensional lattice of words.

Each word has a begin time, an end time, and a likelihood score. The begin/end times state where

the word was detected in the utterance. The score indicates how certain we are that the word is

correct, based on acoustic/phonetic information. In the sample lattice below, the horizontal

dimension is time, and the vertical dimension corresponds to certainty of recognition of individual

words by the speech recognizer generating the lattice. This word lattice was constructed by hand for

demonstration purposes.

Time in milliseconds
0 500 1000 1500 2000

HI RECEIVED
L CMUA
I USERS
K MESSAGE
E AT
L FORWARD
I LINEPRINTER
H PRINT
o SMITH
0 RECIPIENTS
D COPYING

THE
LO TO

Figure 3: A simplified word lattice containing different kinds
of words. Header words are underlined

9.2.3. Header combination

To start its processing of an input word lattice, the parser selects from the word lattice all header

words above a recognition likelihood threshold. These headers correspond to caseframes, but only

some combinations of the hypothesized caseframes are possible in the domain. To calculate the

legal caseframe combinations, a set of phrase structure rules were derived that apply at the frame

level (rather than at the more detailed word level).

To make matters more concrete, let us refer to the sample lattice above. In this lattice, the

underlined header words would be combined to form the nuclei of sentences like: "Forward message

Smith CMUA" and "Print message lineprinter." Caseframes can combine in this way if one is of the

right type (as defined by the InstanceOf attribute for the case) to fill a case of another. When

combining caseframes associated with header words, the parser also uses knowledge about word

order to limit the possible combinations. In our example, the forward caseframe (as defined in Figure

1) has a slot for a MsgOblDesc as a DO. The order restrictions built into the parser only allow for the

direct object (DO) after the verb. The message caseframe (Figure 2) fulfills these requirements. It is a

_~ ~~~ N., 'N.-.
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MsgObjDesc, whose HeadForm "message" occurs after the forward caseframe HeadForm "forward"

in the lattice. Thus the two can be combined, as long as the constraint of the required

MsgRecipientObj can be satisfied (by "Smith").

Each time a valid sequence of headers is found, it is given an overall likelihood score and merged

with the previous ones. At the end of the header combination phase, we have a list of ordered partial

phrases, containing all the legal sequences of header words that can be found in the word lattice.

Each partial phrase is represented as a set of nested caseframe instances. For instance, three

combinations would be formed from the header worus:

Forward message Smith CMUA

and these would have the nesting structure:
[ForwardAction

HeadForm FORWARD
MsgObj [MsgObjDesc

HeadForm MESSAGE]
MsgRecipientObj [MailAdrDesc

HeadForm SMITH
Host [LocationDesc

HeadForm CMUA]]]

[ForwardAction
HeadForm FORWARD
MsgObj [MsgObjDesc

HeadForm MESSAGE]
CCRecipientObj [MailAdrDesc

HeadForm SMITH
Host [LocationDesc

HeadForm CMUA]]]

[ForwardAction
HeadForm FORWARD
MsgObj [MsgObjDesc

HeadForm MESSAGE
MsgOriginObj

[MailAdrDesc
HeadForm SMITH
Host [LocationDesc

HeadForm CMUA]]]]

where square brackets indicate caseframe instances and the nesting is conveyed by textual inclusion.

A routine to check word junctures is used during the header combination phase. Whenever two

header words are combined for a partial phrase, the juncture between these words is checked to

ascertain whether they overlap (indicating an illegal combination), abut, or have a gap between them

(indicating significant intervening speech events). This check also enables the parser to deal

efficiently with co-articulated phonemes as in "some messages". These phonemes are merged in
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pronunciation, resulting in a pair of overlapping word candidates that are nevertheless valid. These

word juncture checks comprise a top-down feedback mechanism to improve the speech recognition.

9.2.4. Casemarker connection

Once caseframe combinations have been formed, the next step is to fill in the gaps between the

words of the corresponding partial phrase. We take each combination in turn, starting with the one

with maximal-likelihood. The caseframe speech parser first tries to fill in casemarkers, which are

usually prepositions.

Let us continue our example with the first of the header combinations formed from the phrase

"Forward message Smith CMUA". For this phrase, casemarkers may appear before the

prepositionally marked cases "Smith" and "CMUA". The requirement that the casemarkers must

appear between the header words of the containing and contained caseframes is a strong constraint

on the possible locations of the casemarkers. There are generally strong limitations on what words

could possibly serve as markers for these cases. In our example, using information from the

caseframe definitions of the previous section, the parser would thus try to verify one of the words "to"

"from" between "message" and "Smith" and one of the words "on" or "at" between "Smith" and

"CMUA "

Whenever a set of words are predicted by the parser in a given segment of the input, a word

verification module is called. This module has knowledge of the complete word lattice. A word that

matches the prediction is sought from the lattice in the specified gap. In addition, the acoustic-

phonetic data is consulted to give an indication whether the word is a perfect fit for the gap, a left or -

right anchored fit, or if there are intervening significant speech events on the left or right. This

information allows the parser to determine how much of the input has been accounted for by a given

partial phrase hypothesis.

Every successfully verified casemarker causes the parser to spawn another partial phrase

hypothesis (analogously to the SPLIT operation in MULTIPAR). The word could be a spuriously

hypothesized word, i.e. one that was "recognized" even though it was never spoken (also known as a

false alarm). Therefore we leaw the old partial phrase without the casemarker in the ordered list of

partial phrases and merge a new partial phrase into the list. The new partial phrase is a copy of the

old one, with the casemarker also filled in. A new likelihood score is computed for this phrase.

The score for a partial phrase is currently computed as the sum of the time normalized probabilities

of each word divided by the time of the total utterance. Thus the probability of each word is multiplied

-.
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by the duration of the word, summed over all words and divided by the duration of the utterance. This

favors longer partial phrases over shorter ones. However, even extremely low scoring long phrase

candidates are favored over well scoring shorter phrases. Alternative scoring procedures for partial

phrases could recognize the tradeoff between long, low scoring utterances that seem to account for

all the input and short phrase hypotheses with excellent scores that leave gaps in the utterance

unaccounted for. An ideal scoring function would also use semantic and syntactic wellformedness as

criteria.

Sometimes, none of the case markers being verified are found. This may mean that:

" the speech recognizer failed to detect the marker. Unvoiced co-articulated monosyllabic
words (such as prepositions) often go undetected;

" or, the most-likely parse at the case-header level was indeed incorrect, and a lower

likelihood parse should be explored to see if it is more consistent with the acoustic data.

At present only the second choice is considered, but it should be possibile to develop an enhanced

verifier to re-invoke the lower level processes (acoustic analysis or word hypothesizer modules) with

strong expectations (one or two words) at a prespecified window in the input. We would hope that

such a process could detect words missed in a more cursory general scan - and thus use semantic

and syntactic expectations to drive the recognition of the most difficult segments of the speech form.

It the verifier were to return with a recognized case marker, but a low likelihood, the overall likelihood

value of the next parse could make it the preferred one.

9.2.5. Prenominal filling

The next phase in processing fills in the prenominal sections of the partial phrases. The parser

looks for prenominals in the following order:

Predeterminer Determiner Ordinal Cardinal Adjective*

A lexicon associates each potential prenominal word with the correct type. Thus we first look for all

possible predeterminers (e.g. 'all') within the available gap before the corresponding header word.

Again the successful verification of such a prediction spawns a new partial phrase, just as described

for casemarkers. The old partial phrase remains in the list as a precaution against false alarms. It

should be noted that remaining old phrases accounting for less input receive a lower global likelihood

value because unaccounted for input is penalized.

Then determiners are examined. In our example, the determiner "the" will successfully be found to

modify the message caseframe. The other prenominal types are filled in the same way. Post-nominal

modifiers (i.e., prepositional phrases) are parsed by the caseframe instantiation method above, as

nominal and sentential caseframes are treated in much the same way.

%.% % % %
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9.2.6. Extending coverage to simple questions

Although we have not made completeness of syntactic coverage a focus in our work on speech

parsing, we made some simple extensions to gain some idea of the difficulty in syntactic extension. In

particular, we extended the system to deal with simple interrogatives as well as imperatives and

declaratives. No changes to the caseframes themselves were necessary, just to the parsing

algorithm. We introduced a separate stage in processing to look exclusively for question words.

These words may be the standard wh-words (who, what, when, ...) or sentence-initial auxiliary verbs

to indicate a yes/no question (do, does, is, will, .. ).

The word order rules in the header combination phase also required extension. These rules now

have to allow fronted cases

What messages did Smith send

and questions where the HeadForm of the case is collapsed into a question word

Who sent this message

Finally, we added a new module to fill auxiliary verbs in the correct locations. It operates just like

the casemarker connection module and will not be described further here. By providing the parser

with constraints governing the agreement of subject/verb, of auxiliary verb/main verb, and of

prenominal/noun, the number of plausible alternatives is kept low. The relative ease of this extension

is another demonstration of the advantages of the multi-strategy approach to parsing that we have

developed and used.
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